PISTORIUS

Design of a Steel

Skeleton Office Building

Civil Fingineering
 B. S.

1911

电

DESIGN OF A STEEL SKELETON OFFICE BUILDING

Bernhard Henry Pistorius

THESIS

FOR THE

DEGREF OF

BACHELOR OF SCIENCE

IN

CIVIL ENGINEERING

 JN THECOLIAEGE OF ENGINEERING

UNIVERSITY OF IfLINOIS

UNIVERSITY OF ILLINOIS

May 25, 1911

I recommend that the thesis prepared under my supervision by BERNHARD HENRY PISTORIUS entitled Design of a steel skeleton Office Building be approved as fulfilling this part of the requirements for the degree of Bachelor of science in civil Engineering.

OUSNalerlmt.

$\overline{\text { Asst. Professor of structural Engineering. }}$

Recommendation approved:
Ira O. Baker.
Head of the Department of Civil Engineering.
h. 218
COMTHITS
Introduction.
$\therefore \varepsilon 0$
Architectural Pestures.\leqslant
Plate I - Lot-Plan 5
Flate II - Ground Floor-Plen 7
Plate III - Socond Floor-IIan 8
Flate IV - Typicel MIoor-MIsn 9
Plate Y Roor Plan IC
Plate VI - Mrain Street Slevation 12
Ioads ana Stresses 13
Tribe A - Unit Colum Iords 15
Tloor Systems 26
Plate VII - Sections Throunh Floor and Roof 19
Table B - Design of Eloor Beams 21
Table C - Design oi Floor Girders 22
Plsto VIII- Poundation-IIon 25
Plate IX - Ground Floor Framine-FIan 26
Flate X - Mrpical Office Floor Praming-Plan 27
Plate XI - Roof Framing DIan 28
Columns 30
Table D - Column Loads for Interior Columns 32
Tade E - Column Loads for irall Columns 33
Table F - Column Schedulo 36

Digitized by the Internet Archive in 2013

COIT EITTS (cont?
Spandrels and Cornices 39
Plate XII - Spandrel and Cornice Sections 40
Plate XIII- Section Through Spenirol, Vall.
and Column41
Wind Bracing 46
Flate XIV - Winả Bracing 47

DESIGI OF A SMERI SHMLEIOI OFPICE BUITDING

TITRODUCTION

There are four general types of construction applic able to tall buildings, as follows:
(1) Buildings in which the eaterior walls are designed to carry their orm weight, together with the wall ends of the firders winich carry the floor loads. The interior floor loads are carried by beams and girders to steel or cast-iron columns.
(2) Buildings in which the exterior walls carry only their own weight, the wall ends of the poor eirders and beams beine carried by the columns.
(3) Buildings in which the exterior wells and floors are all carried by a steel framemork of columns, eirders, and beams.
(4) Buildings constructed of reinforced concrete.

Structures of the first class are Iimited in heisht to about ien or twelve stories on account of the excessive thichness of walls at the base and the laree bering loads upon the soil.

The second type of construction nermits a lighter exterior wall than the first. It also has an sdvantage in that all the columns are carried on isolated piers, and a more equal settlement can be obtained. Furthemore, the fiers carrying the virlls are indenendent of those cerryine the floor

Ionds, therefore an wequ: settloment of one pier with respect to another will causo no drmpe oithor to the .in .is or to the steelvoris.

Whe tirird byve. Imown as the "crece" or "Sreleton" construction, is the one used in the construction of rodern sheyscrapers. It pormits the use of thin oxtorior malla, thus reducing their weikht to a minimum. The foundations consist of an isolated pier under aach column, which can be proportioned so that the sottlements will be nearly equal. The use of cantilever footines, which is verr often necessary When it is desired to recp all foundations inside of the building line, is more easily applied to this tyje. The "cage" construction pormits of great rapidity in erection. Often the ontire steel work, floors, and exterior walls of large skyscrapers are completed in from three to six months. The use of terra-cotta $a s$ a fire-proofing material is a common practice, and often exterior walls, floors, and partitions are all built of this material. Concrete has been used to a considerable extert in floor construction.

Tall reinforced-concrote buildines are built usine a. construction similar to the stecl siceleton trpe. The columns, girders, and beams are huilt of reinforced vorcrete and the floors are reinforced-concrete slabs, which re cemried by the beams and girders. In some forms of construction the beams and firders are omitted, the floors consistine simply of a reinforced-concrete slab, supported by the columns. The exterior walls are sometimes built of concrete, but are more often consirueted of bricir or torra-cotta mich,
(
as in the cnec of the stecl skeloton true, is supporied at each Cloor by beams. Buildings of this type are gencrally built to moderate heichts, only; homower, some tmelve-story structures have becn erected.

In taking the design of a steel skeleton office building for a thesis, it will be necessery to limit the ertent to mich the various parts of the desion are developed, due to the great variety of the different ranches of construc tion involved, end to the crest number of letails. It rill be endearored in this desien to treat of only that portion of the desion of the superstructure viich is considered tie worr of the civil or structural ongineer. The architectural features will be consiàered only in a eeneral vay merely for tine purpose of fumishine a Forkine basis for comyuting the Ioads carried by the steci framewor. In the design of tio frameworl only the sizes chu shapes of the different members will ve àetermined, althougin the method of framine vill be shown. No shop details or wortine drawings will be made. The design of the plumbing heating, and ventilating will not be considered.

The design will be taken in the following order: Architectural Features. Ioaus and Stresses. rloor Systems. Columns. Spendrels and Cornices. Find Bracing.

The desien of a modern office milding de ieriss aron so many factors trat it will be necessery to make sume assum tions for the vuilaine under consideration. The building designed will be taken as twelve storics in heifint. The Fround floor will be used for stores. and the eleven floors above will be used for business offices. Ilate (I) shows the lot-plan. The lot is a tupical corner one at an oblique street intersection, its dimensions ard shape havine been chosen at random. It is assumed that the building is located in Chicago. C. C. Schneider's "Building Specifications" will be useả.

In office builaines the offices are gencrally arrang
ed to suit the tenant. It is necessary, however, for the architect to determine the location on light courts. stairs, elevators, and corridora, so that he may eet the most convenient and economicnl srrancement for the offices. The main entrance of the building should be on the man-street side of the building. The elevators should he centrslly located and should be close to the entrance. so that there will be as little loss of floor-space as possible. In the floor-plen lajout the location of columns should be given much consideration. The ideal distribution oi colums mould be that in which all the framing would be rectangular. all spans nearly equal and of such dimensions that the beams and girders vould be stressed to just the workinc Iimit. This distribution of

colurns can very rarely ve obtained in office buildirどs． because the location of the columns will，in most cascs，be governed by the arrangement of the office and corridor par－ titions and other architecturnl features．It is a eeneral prectice to place columns at the intersections of corridor and office partitions．In this building，hovever，the above arrangement would prove impracticable ε is would necessitrite additional columns or long girder spans．Which would be more expensive then if one row of columns be set back from the corridors and run through the partitions between offices It will be necessary to try numerous column－lapouts and floor plans for any particmar lot before the vest arranement can be determineả．The floor－plans used for this design are the result of several trials of possible layouts，and in the writer＇s judgment are the best that could be devised for this particular lot．Plates（II），（III），（IV），and（V）show the 以lans for the gromn floor．second floor，tricel office floor，and roof．

A Lieht－court will be necessary os it is impossible to light all offices from the street sides of the building． In placing the light－court on the lot－Iine it is assumed that the adjecent property owner will build a similier court adjoining this one．The Denefits thus derimed will be greater and will be obtained at a smaller loss of lot area than if the buildings were built with individual courts． which did not adioin．The corridors are lighted by the use of sush doors and sashes placed in the corridor pattitions． It will be necessary to lient the stair－well by means of

- $\quad \therefore$
artificial licht. Stairs aro required by the buildine ordinance of Chicaec. This ordinance requires, for a building of this type and size, one flight of stairs at lenst five feet in width. Three elevators have been provided, and these should prove ample for a building of this size. These elevators will be built strong enough to carry ordinary office furniture: therefore, no freight elevator has been provided. The stack is placed in the light court instead of in the interior of the builaing to save floor space. Coilet facil ities will be provided by two large toilet rooms, one on the fifth and the other on tine seventh Moor. The former is for men and the latter for women. One small toilet room for men's use, fitted with a closet and a lavatory, will ve located off the corridor on each floor. In adaition to these, each office will be provided vith a lavatory. Other details, which must be considered in the floor-plans, are the location of vents, pipe-spaces, end vaults. The latter can be built in almost any desired location and for office purposes they are usually built of terra-cotta partition-blocks.

The elevation of the building is strictly an architectural feature and is generally decided entirely by the architect. That the steel skeleton type of buildine permits of a very beautiful architectural treatment is proven by numerous examiles of very handsome buildines in our large cities. Much oan be said concerning the aesthetic design of the exterio ris of skscrapers, but this is in the realm of the architect, not of the civil engineer. Plate (VI) shows the elevation of the building under design.

Section

- Main Street Elevation:-
(㢈t Street Eloustion will be similar.)

LOADS ATD STRESSES

The loads which are considered in the desien of a tall building are of three kinds; dead, live, and wind londs. The dead load consists of the weight of all the materials of construction. such as fleors, beams, girders, columns. and all permanent fixtures. The live load consists of the weight of persons, office furniture, stores, moverbie partitions, and moverble goods. The wind load is the pressure on the exterior of the builaing due to the wind. In all cases the dead loads can be determined by calculating the veights of the materials. The amount of live load per square foot of floor area depends upon the use of the floor. There is a considerable difference in the building laws of various cities as to the amount of live lond to be considered in ofice floor design. New York, for example, requires 100 pounds and Chicago 70 pounds per square foot of floor surface for the floor beams. A reduction of this rmount in varyine degrees is permitted for girders and columns: since there is a small probability that all the area supported by a girder or column will be loaded with the full live load at any time. The reduction in the Iive lond for girders is generally 10 or 15 percent. A reduction of 15 percent, as recommended by Schneider's Specifications, vill be used in this design. The New York law requires that the total live load be considered as coming upon the columns in the upper two floors, and that it shall be decrensed 5 percent for each floor downvard, until
a reduction of 50 percent is reached. This reduction is practically the same ns that given in Schneider's specific. ations and will be used in this design. Table a shows the results of this reduction in pounds per square foot for each floor. A live lord of 7 C pounds per square foot will be used in accordance with the Chicago Ordinance for the design of the office floors, IOC pounds per square foot for the ground $f 100 \%$ and 40 pounds per square foot for the roof. In the design of the framing which supports the elevators the load will he considered as doubled to take care of shocks. A lose of 200 pounds per square foot will be used as live load in the design of the sidemalks framing. This amount is require by the Chicago Ordinance.

The following summarization gives the working stresLes and unit dead loads, together with a table of unit dead and live loads for the columns.

AUIOMIBLE STRTGOSS

I-beams (floor beams. girders, spandrels) 16 coo lbs. per Columns (concentric loading) $16000-70 \frac{1}{r}-1 b s . n e r s q . i n$ Columns (eccentric loading) 16 coo - $70 \frac{1}{r}-\frac{3}{4} \frac{\text { Mic }}{\mathrm{I}}$ IDs
per sq. in. In the above formulas.

1 = unsupported length in inches.
$r=$ least radius of gyration in inches,
$c=$ distance to extreme fiber in inches.
$I=m o m e n t$ of inertia in inches.

TABLE A

UNIT COLUMN LOADS

D-Dead load -lbs. per sq. ft.
L -Live floor beam load -lbs. per sq. ft.
A-Total of live load-lbs. per sq. ft.
B-Percentage of full live load for columns
C-Total live column load per sg.ft. of area supported. L'-Live column load per sq.ft for each floor.

$$
I N=\text { bendine moment in pound-inches. }
$$

The followine weients of materials were used in calculating the dead load.

NJ,OOR SYETENS

There are a great number of furs of floor construction which are applicable to steel skeleton structures. The types most generally used con be dirided into three classes. the hollow terre-cotta tile arch; the reinforced-concrete slab: and the combination of terra-cotta tile blocks and reinforced concrete. The hollow terrs-cotta-tile arch is the most common trpe, and at present is used more than any other method of iloor construction in steel sireleton buildings. The tremendous popularito of the steel frame construction is in a incee measure dide to the adaytability of hollow terracotta tiles in the construction of fire-proof floors and in fireproofing the steel work in eeneral. Space does not permit an exnaustive discussion on the merits of the various types of floor-construction, but a brief descri, tion of the terra-cotta arch and its advartages will he siven.

The torra-cotita type of arch is uved for shm: Varying from about fou* to eighteon feet. In the amalier spens - those Un to alout eicht fect - the flat erch is generally used, and in the larger spans the segrantal arcin, or canborad erch, is rewt. Tris trre of Moor has heen proved by practical ana experimental tosts to be as fireproof and to afforáa as much protection to the stecl frame is any floor system yet devised. It is recognizedे ss "firefroof construction" by fire underviriters throughout the country. Its chief edvantage over other types of construction is the rapidity with which it can he laid. The centering may be removed vithin tmenty-four honrs after the arches are leia, while for concrete floors the centering must, under the most favorable conditions, remain in place at least ninety-six hours, and often two weoks under unfavorable veather conaitions. The flat arch is very commonl used owing to the ease with which it can be plastered on the underside. A flat ceiling is thus obtained without the use of a suspended framework such as vould be required with a concrete floor. The terra-cotta arch also acts as a lateral bracine for the structure. since it extends the full depth of the floor beems. Concrete iloors, on the other hand, cover oriy the upper third of the floor beans. The hollow tile arch-blocks are excellent non-conuductors of sound , \& very importent consideration in office and hotiel buildings. The concrete floor is particulerly adapted to buildings of irreeular shave, in wich there is consiàrable irregular framine. since the pouring of the con-
crete is not renderol no- more difficult hit such irreyrine ities. In the ense of terra-cotte rehes, a consjaeralie muber of "snecial" n locis would te required inder theso an aitions.

For a civen superimposed Tord, the devth of arch will depend mpon the span. In this building tio Eirder Spans viry from rifteer to eichiteen feot and could be divided into four arch shans, verying from tree foot-nine inches to four feet six inches, or into three arch-spans, varuine from five feet to six feet. "rith the smaller arch-snen a wizinch erch. weiching aboul twenty-fite pounds per samere foot of floor and requiring floor veams ten inches in doptir, could be used. As ${ }_{n}^{2}$ flat ceiling Uithout beams is desired, this depth of arch could not be useu unless a ereat amount of filling was used to brinc the floor above the top or the floor beams. Mhis mould maize the floor nearly as heary ns a twelve-inch arch, and evon then it would heve loss strength and monld require more steel. This is riso true of the cight-, nine-. and ten-incil srohes. A twelve-inch arch will require twelve-inch floor-beams, anu it can te laid witi a miximurn syan of atout seren feet. For this lond and for the floow-beam spans used in this builaine a twelve-inch I-beam is required; tierefore, a twelve-inch arch will be used in this design. Manufacturers list the twelve-inch arch, having a six-foot span, as beine able to carry a superimposed load of two hundred ninety-five poundes, with a factor of safoty of scren. This'is emple strons for the purposes of this desien. Ilate (VII) sinoms the details of the trrical floor rad roof construction.

Section thru Floor. Showing typical floor construction.

Section thru Root. Showing root construction. and suspended ceiling-

The Eirdexs ir the eround floor nad necord 41000° will consist of single I-beams of ereater depth then tho floor-beams, as a "beamed" ceiling in the bescment and ground floor is not an objectionable ferture. In the othor office floors all the girders, except those which occur in the par-
 gether bJ separators - of the same depth as the floor beams. This will aroid any projecting beams in the ceiling in the offices or corriudors. In the desion of the benms and zirders around the stair-well the same dead and live load per square foot Tas considered for the stairs as for the floors.

Table (B; shows tre computations in tabular form for the floor beams of typical office floors. As the spans and framing are similar for all floors and roof the section moduli required for beams in both the main floor and roof will be proportional to the loads crried. These compratstions have not been shorn. Taible (C) and page 22 give the computations for the girders for the typical. office flcors. The computations on pages 23 arda not include all of the girders, but are illustrative of the methods of computine beams mith unsymmetrical concentrated loads. The girders of the main floor and roof were computed by proportion, as explained above. Plate (VII) shows the eeneral arrangement of the caissons ard the cantilever girders of the foundation. siates
(IX), (X), and (XI) slow the steel framing plens for stumu floor, typical office floor, and roof, wnu Eive the sizes end weichts of all members.

TABLES.
DESIGN OF FLOOR BEAMS. OFFICEFFLOORS.
Dead Load-85; live load-70; total-15516s. per sg. ft.

TABLE.

DESIGN OF FLOOR GIRDERS OFFICE FLOORS.

Dead load $=85$; live load $70 \times 0.85=60$; total $=145 \mathrm{lbs} . / \mathrm{sq}$. ft.

Diagram showing symbols used in table above.

COIPUTATIOITS FOR GIRDERS.
OFFICE FLOORS.

Dead load $=85 ;$ live load $=0.85 \times 75=60$; total $=145$ lbs. yer sq. ft.

Girder GI.

$$
\text { Least depth section useable }=15^{\prime \prime} I 55 *-\frac{I}{c}=
$$

$$
\text { Use }-18^{\circ \prime} I 55 \#-\frac{I}{c}=88.4
$$

Girder G5.

$$
\begin{aligned}
& P_{1}=9.5 \times 6.0 \times 145=8250 \frac{14}{} . \\
& P_{2}=1.0 \times 2.5 \times 155=3880 . \\
& P_{3}=1.0 \times 5.0 \times 145=7250 .
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=5.83 \times 10 \times 145=8460 \# \\
& n_{2}=(\text { Reaction of } B I)=9180 \text {. } \\
& \text { Total }=17640 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \pi=15.3 \times 5.83=89500 \|^{\prime \prime} . \\
& -\frac{I}{c}-89.5 \times \frac{12}{16.0}=67.1
\end{aligned}
$$

$R_{2}=\frac{8.25 \times 6+3.38 \times 8 \pm 8.25 \times 12+7.25 \times 13}{18.0}=$ 15 $100 \frac{11}{17}$
$R_{I}=27.63-15.10=12.53 \#$
maximum inoment at c.
$H_{c}=15.1 \times 6-7.25 \times I=32.35$.
$-\frac{I}{C}-=82.35 \times 0.75=61.9$.
Least depth section useable $=15{ }^{\prime \prime}$ I $50 \frac{I}{r^{\prime}-} \frac{I}{c}=64.5$ Use $2-12^{\prime \prime}$ Is $31.5-\frac{I}{c}=72.0$.

Girder BI.

$P_{I}=$ reaction $\mathrm{Ba}=4300 \frac{\pi}{6}$.
Mom. at center due to uniform load (b) =

$$
\text { 2.92x155x-19-x19 = } 20400 \|^{4 \prime} \text {. }
$$

Uniform load (Ω) $=2.92 \times 155 \times 8=3520$.
fax. moment will occur under load I_{2} (by inspection
Moment uniform load (a) at $I_{2}=\frac{4.0}{19} \times 3620 \times 11=$

M_{2} (conc. loads) $=3.13 \times 8=25000$.
Total $\mathrm{H}_{2}=20400+8400+25000=53800{ }^{\mu n}$.
$-\frac{I}{c}-=5.38 \times 0.75=40.4$.
Least depth section useable $=121$ I 40\# $-\frac{I}{C}-=41.0$. Use 12" I 40\#.

-Ground Floor Framing-Dlan-

- Roof Framing-Plan-

$$
\cdots
$$

SteeI I-beams, I2" 35非 $6^{\prime}-C^{\prime \prime}$ o.c. - - 6.0 IUs./sq. ft. Terra-cotta arch, I2" — — — — — - 35.0 " " " Plooring, 3/4" maple $-\ldots-------3.5$ " " Sleojers, $3^{\prime \prime} \times 3^{\prime \prime}$ pino $18 " a c .----0.5$ " "

 Partitions, 6" tilc_ _ _ _ _ _ _ nn.0 " " " Total for office floors - - - - - $\mathrm{O} . \mathrm{C}$ " " "
 Total for main floor — - - - - - - 95.0 " " "

Weight of Poof. (see Plate VIT)

 Tar and fravel composition roof - - - $0.0 "$ " Stecl, $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}$ TS. I $8 "$ o.c.e-5.0 " " "

$$
\begin{array}{lll}
& 38.0 \\
\text { say } & 10.0 \quad "
\end{array}
$$

RIEVATCR ICADS

Whe following deta Fere used in desienin, tho olov ator framine at tie roof:

```
Arcat of clovetor 6'-2"若 5'-2"-_._Sl.C Sg.ft.
Dend lon? of cage - - - - - - 2200 lhe.
Ifve lond of carc 31.C x 75-- 2.33n "
Counter woicht, and ropes - - - 3900 "
35 M. ?. M0%:O1 _ _ - _ - _ - _ 335n "
Mochinery - - - - - - = 2050
Total _ - - - _ - - - IN 500
```

The computations necessary are similar to the girder computations shown on pages 23 and 24. Plate XI shovs the remince orer the elevator shafts, and gives the sizes and weights of the nembers used.

coLunits

The colums of this building may be divided into two groups, interior and wail columas. The interior columns carry the floor and roof losds, and some of them carry the elevator loads. The wall columns carry floor end roof loads.
 u_{i} on an interior colum at any floor is equer to the sun of the reactions of the ciruers and beams fremine into it. The sum of these reactions for ens floor will be equal to the floor ares supported bje the columns multiplied is the unit load deadnplus the unit live load for that floor. The floor area supported by any colum can easily be determineu from the spiscine of the colums. Feble Defves tre loadines for five
interior colnems. In tiris terile the tio cilariti on tice lont Eive the dead and live Ionds wor squere fuot for eech floor. At the tor of the terico are given the numbers of the columr. which refer to their position on the floor-plen, and the number of square feet of floor area suptorted by the column. The numbers opposite the items Eive their veights in pounds for each colum. The item "column" includes the veicht of the column itself, together with the weiglt of the terra-cotta casing. This weicht was aplroximated by summine up the loads exclusive of the woight of the colum, and then sproximating the column section. The rssumed veicht here used is consistont with the returl weichts of columns and crsines in similar buildines. In floors 1 to 11 inclusive, the column weicht has been inciuded under the item "dead floor load" so as to condense the taile. The lofids have been summed up at every second floor. Table (similer to Table D) gives the londings for four well-colurans. Column 18 is a tyrical street wall-column, concentrically loaded. Colum 28 is a typical blank-wall colurm, Elso concentrically loaded. Column 25 is loadeu similar to column 18, and is a column in the lightcourt well. Columr. 11 is a typicel. eccentricslly loaded corner column. The table हives the veichts of the masonry spandrels, cornice, piers, and sidemalk, which are carried at the various floors. To determine the weights of the spandrels, cornices, and piers, they must first be desisned. In this design these weinhts \#ere determined from preliminary designs, which, however, did not differ groetly from the final design (see IIAtes XII and XIII). Tho cross-section of the

TABLE-D.
COLUMN LOADINGS. FOR
INTERIOE COLUMNS.

TABLE-E.
COLUMN LOADINGS FOR
WALL COLUMNS.

D	L'	Story	Number of Col.	18	28	25	1	
			Floor area support'd	146.0	170.0	132.0	Concentric z9.0	Eccentric 58.5
50	40	Roof	Roof load dead	7300	8500	6400	1400	2900
			" " live	5800	6800	5300	1200	2300
			Masonry pier		12700	12200	6500	21000
			Cornice	40400		10300		
			Total.	53500	28000	34200	35300	26200
85	70	12	Floor load dead	12400	14400	11200	2500	5000
			. live	10200	11900	9200	2030	4100
			Masonry pier	5800	30400	12200	15600	5850
			Spandrel.	12700		10280		4100
			Column	2000	2000	2000	2000	
${ }^{\prime \prime}$	61	11.	Floorload dead	12400	14400	11200	2500	5000
			" " live	8900	10400	8000	1800	13600
			Masonry pier	12200	30400	12200	15600	12200
			Spandrel.	8450		10300		2700
			Column.	2000	2000	2000	2000	
			Total.	140600	143900	122780	121700	42500
11	54	10	Total for floor	48000	56500	43400	22100	23100
"	47	9	" "	47000	55300	42400	21900	22700
			Total.	235600	255700		211500	45700
11	40	8	Total for floor	46400	54600	42000	22200	22300
"	33	7.	"	45400	53400	41000	22000	21800
			Total	327400	363700	291600	299800	44100
"	26	6	Total for floor	44900	52700	40600	22300	21400
4	19	5	" ${ }^{\text {c }}$	43900	51500	39700	21100	21000
			Total	416200	467900	371900	386700	42400
"	12	4	Total for floor	43300	50800	35300	22400	20600
"	6	3	Floor load. dead	12400	14400	11200	2500	5000
			" " live	900	1000	800	100	400
			Masonry pier.	12200	30400	12200	15600	12200
			Spandrel	12680		10300		5000
			Column	4000	4000	4000	4000	
			Total	501800	568500	449700	473500	42200
"	z	2	Floor load dead	12400	14400	14500	2500	5000
			" " live	300	300	300	100	100
			Masonry pier	13400	30400	12200	13400	
			Spandrel.	8400		10300	16600	2700
			Column.	4000	4000	4000	4000	
95	45	1	Floor load dead	13900	16100	12500	2800	5600
			" " live	6600	7600	6000	1300	2600
			Masonry pier	20200	3000	15000	35800	
			Sidewalk-dead+ live	50900			17600	17600
			Column.	4000	4000	4000	4000	
Total dead +live loods				605900	675800	528500	604200	33500

spandrel was approximotod from slictchos, End I30 pounds por cubic coot was used as its veight. Inis is eronter than the weicht of bricl masonry, but was adoyted on account of the fact that the spadrel will contain considerable steel, and must anrry the weicht of the window frames, sasis, and el हss. The corner column will be eccentrically loaded, and must be designed accordingly. The table shows the amount of concentric and accentric load comine upon the colums at each floor. The eccentric load is the load carried by the girder which produces bending moment in the colum. The eccentric load of ench floor will probably be rapidly transferred to the center of gravity of the column-section, end it vould we sufficiently safe to consider only one firder reaction as eccentric in each story-lenそth of the column. In this desien however, the sum of two cirdex reactions was considered es the eccentric load in ε two story lensth of the column. Ihis will simplif the computations. and will be on the side of safety, without producine an extrepacont section.

The columnesection sulopted in tizis desien is comLosed of a web liste, four micles, and two or moro corer plates The Decir to brcic distance of the angles was kept constant from the vasement to the roor, so as to simplify the splices and kecp the lengtins of the corrospondine eirders and beams uniform in all stories. The columns vill be spliced every two stories, the splices being a few foet above the floor level.

In summing up the loads on each colum, it was pound that the columns could be aivided into four Erouns whose loadings are veruv similnx. Mhe one havine the ureatest loading
of eacis groun wa, dosigned, and the othor columis of that Eroup were made the same sire. There will be sis ecoentrie ally loaded corner colurns. In summing un the londs on these columns if ฟes found thet columns 11. I.6, 2I end 23 have very nearly the samo londings, and the others hare a somewhat smaller loading. Column Il sumports the Ereatost concentric and eccentric loads, and was designed for this orroup. Iente (F) shows the column schedule for the building. At the top Of the table are eriven the numbers of the columns included in each group and below each groug is given the column-section for each two-story leneth from hasement to roof. The finel computations will be shom for four storics of colurms for. both concontric and eccentric loadines. The metnod used in these computations is "out and try" and those here shom are the final trials.

Column Computations.

Desien of column 2.
Basement to 2nd. floor.
Unsunported Iencth $=15^{\prime}$. Ioad $=540500 \mathrm{Ibs}$.

Section
4 เs $6 \times 4 \times-\frac{9}{16}$
1 p1. I2 x I/2
2 pls. $14 \times 5 / 8$
motal.
Area sq. ins.
$21.24 \quad 185.53$
6.00
0.13
285.84
471.50

Stories		$\begin{aligned} & \text { Cols. No. } \\ & 4,5,6,7 \end{aligned}$	Cols．No． $1,2,3,6,8,5,10 .$	$\begin{aligned} & \text { Cols. No. } \\ & 22,27,28, \\ & 13,14,15,17,18, \\ & 19,20 . \end{aligned}$	$\begin{aligned} & \text { Cols. No. } \\ & 11,16,21,23, \\ & 24,26 . \end{aligned}$
Story height	Roof	$415-3 x^{\prime \prime} 3^{\prime \prime} \times \frac{3^{\prime \prime}}{8}$ $\frac{5}{16}$＂stay pls． Area． 8.440	$415.4 " x 3^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime}$ $\frac{5}{16}$＂stay pls． Area，9．92ロ＂	415． $4^{\prime \prime} \times 3^{*} \times \frac{3^{\prime \prime}}{8}$ 3＂stay pls． Area 7．92ロ＂	$415.4 x^{\prime \prime} 3 x^{\prime \prime} \frac{3}{8}$ 3＂stay pls． Area．9．92．＂＂
12 ft ．	12th．				
11	11 th．	Web $12^{\prime \prime} \times \frac{5}{16}$ $45-3^{\prime \prime} \times 3^{\prime \prime} \times \frac{30}{8}$ Area 8．44＂	Web． IZ゙ $^{\frac{5}{1}}{ }^{\prime \prime}$ 415． $4^{\prime \prime} \times 3^{\prime \prime} \times \frac{-311}{8}$ Area 13．670＂	Web $!Z^{\prime \prime} \times \frac{3}{8 \prime}$ 4L5－ $4^{\prime \prime} \times 4^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime}$ Area 15.94 口＂$^{\prime \prime}$	Web． $12 ゙ \times \frac{3}{8}{ }^{\prime \prime}$ 415－3＂${ }^{\prime \prime} 3^{\prime \prime} \times \frac{3}{8 \prime}$ Zpls $8^{\prime \prime} \times \frac{3}{8}$ Area．18．94＂
11	loth．				
＂	9th．	Web． $12 x^{\prime \frac{3}{8}}{ }^{\prime \prime}$ Area 14．\triangle Zä	$\begin{aligned} & \text { Web. } 12^{\prime \prime} \times \frac{3^{\prime \prime}}{8^{\prime}} \\ & 415.43^{\prime \prime} \times \frac{3^{\prime \prime}}{8} \\ & 2 p l s .9 \times \frac{3^{\prime \prime}}{8} \\ & \text { Area } 21.7^{\prime \prime} \end{aligned}$	Web $12 \times \frac{3}{8}{ }^{\prime \prime}$ 4 药 $4^{\prime \prime} \times 4^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime}$ 2 pls． $10^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime}$ Area 23．440＂	Web $12{ }^{\prime \prime} \times \frac{3}{8}$＂ $415.4^{\prime \prime} \times 4^{n} \times \frac{3}{8}{ }^{\prime \prime}$ 2pls． $10 \times \frac{7}{16}{ }^{11}$ Area 24．690＂
＂	8th．				
\prime	7th．	Web $12 x^{\prime \prime} \frac{3}{\varepsilon^{\prime \prime}}$ 4 LS $4 x^{\prime \prime} 3^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime}$ 2pls． O＂x $^{\frac{3}{8}}$ Area． 21.17 a＇$^{\prime \prime}$	Web に＂x $\frac{1}{2}$ 415． $4^{\prime \prime} \times 4^{\prime \prime} \times \frac{1}{2}$＂ 2pls． $10^{\prime \prime} \times \frac{3}{8}$＂ Area 28．50ロ＂	Web $12^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ 4 L5－5＊3 Zpls． 12 ＂$\times \frac{3 n}{8}$ Area 31.00 ＂	Web 12 ＂x $\frac{1}{2}$ 4 统． $5 \times 3 \frac{1}{2} \times \frac{71}{16}$ Zpls． $12 \ddot{x} \frac{T_{1}}{16}$ Area． 30.62 口＂
＂	6th．				
11	5th．	Web． 12 ＂$\times \frac{1}{2}$ 4 LE． $4^{n} \times 4^{\prime \prime} x^{\frac{1}{2}}{ }^{\prime \prime}$ 2pls． $10^{\prime \prime} \times \frac{3^{2 \prime}}{8}$ Area－24．94a＂	Web $121 \times \frac{1}{2} "$ $415-5 \times 3 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ 2pls． 1 Z＂$^{\prime \prime} \times \frac{71}{16}$ Area 32．50a＂	Web I゙ィ ${ }^{\prime}$ 4 药 $6_{x}^{\prime \prime} 4^{\prime \prime \prime} \times \frac{1}{2}$ 2pls． $14^{\prime \prime} \times \frac{7}{16}$ Area 37．25a＂	Web に゙メ $\frac{1}{2}$＂ 415． $5^{\circ \prime} \times 32^{\prime \prime} \times \frac{5}{8}$ 2pls． $12 \ddot{1} \frac{1}{2}$ Area 37，68＂
＂	Δ th．				
＂	3 rd ．	Web．12＂x $\frac{1}{2}^{\prime \prime}$ $415-4 \ddot{x}^{\prime \prime} 4^{\prime \prime} \times \frac{3^{\prime \prime}}{8_{3 \prime}}$ 2pls． $10^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime}$ Area．28．500＂	Web． $12^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ $41^{5} \quad 6^{\prime \prime} 4$＂$x^{\frac{1}{2} "}$ Zpls $14 \times{ }^{\circ} \frac{7}{16 "}$ Area 37：25 ${ }^{\prime \prime}$	Web $12 \ddot{x} \frac{1}{2}$ 4Ls－ $6^{\prime \prime} \times 4^{\prime \prime} \times \frac{5}{8}{ }^{\prime \prime}$ 2pls． $14^{\prime \prime} \times \frac{0^{8}}{16}$ Area 45．190＂	Web $122^{\prime \prime} \times \frac{1}{2}$ 4E－ $6^{\prime \prime}$ U $^{\prime \prime} \times \frac{g^{\prime \prime}}{16}$ $2 \mathrm{pls}-14^{\prime \prime} \frac{9}{16}{ }^{\prime \prime}$ Area 42．990＂
＂	2nd				
18 ft	1st	Web $12 \mathbf{" ' ~}^{\prime} \frac{1}{z}$ 2pls． 12 ＂$^{1 \times \frac{7}{16}}{ }^{\prime \prime}$ Area 32．500＂	Web． $12 \times{ }^{\prime \prime} \frac{1}{2}$ zpls $14^{\prime \prime} \times \frac{5}{8}$ Area 44．74＂	Web $12 \times{ }^{5} 5^{\prime \prime}=0$ 415 $6 \times 4 \times 8 \times \frac{5}{8}=$ 2pls． $14^{\prime \prime} \times \frac{90}{16}$ 2pls． $14 \times \frac{3}{8}$	Web $12 " \times \frac{3 " 1}{4}$ zpls．U＂${ }^{\frac{5}{8}}$ Area $54.260^{\prime \prime}$
15 ft ．	Bas＇m＇t．				

$$
r=\left(\frac{471}{44} \cdot \frac{50}{74}-\right)^{\frac{1}{2}}=3.24
$$

Allowable unit stress $=16000-70-\frac{180}{3} \frac{1}{24}=12120 \mathrm{Iv} \cdot / \mathrm{sq}$. in.

Efficiency $=\frac{44}{44 .-74}=1.003$
and. floor to th. floor.
Unsupported Ienetin $=12^{\prime}$.
Load $=458$ 100 IDs.

Section
$4156 \times 4 \times 1 / 2$
I pl. I2 $\times 1 / 2$
2 pIs. 14 x 7/16
Total

Area Sq. in.
19.00
6.00
12.25
37.25
$I a-a$ 164.93 0.13
200.08 365.14

$$
r=\left(-\frac{3}{3} \frac{5}{7} \cdot \frac{1}{2} \frac{4}{5}\right)^{\frac{7}{2}}=3.13
$$

Allowable unit stress $=16000-70 \frac{144}{\overline{3} .13}=12780$ Ins. Area required $=\frac{458}{12}-\frac{100}{780}=35.95 \mathrm{sq}$. in. Deficiency $=\frac{37}{35} \cdot \frac{25}{95}=103.5$

$$
\begin{aligned}
& \text { Brscment to 2nci. cloor. } \\
& \text { Unsunported length - I5'. } \\
& \text { Iond - total }=604200 \text { Ins. }-\operatorname{eccon} 1 \text { ric load }=33500-\operatorname{eccen} \\
& \text { tricity }=8^{\prime \prime} \text {. } \\
& \text { Section } \\
& 4 \text { is } 6 \times 4 \times 3 / 4 \\
& \text { 1 pl. I2 } \times 3 / 4 \\
& 2 \text { pls. } 14 \text { ※ 5/8 } \\
& \text { TotrI } \\
& \text { Area sq. in. } \\
& 27.76 \\
& 9.00 \\
& 17.50 \\
& 54.26 \\
& \underline{I \varepsilon-2} \\
& 265.35 \\
& 0.42 \\
& 285.84 \\
& 551.61 \\
& I b-b \\
& 741.27 \\
& 108.00 \\
& 725.50 \\
& \text { least } r=\left(-\frac{51}{5} \frac{1}{4} \cdot \frac{61}{2} \cdot: \frac{7}{2}=3.18^{\prime \prime}\right. \\
& \text { Eccentric moment }=33500 \times 8=26800011 \text {. in. } \\
& \text { Allowable unit stress }=16000-70 \frac{180}{3.18}-0.75 \times \frac{268}{-1574}-\frac{000}{7}-\frac{6}{7}-75 \\
& =11170 \text { Its./sq. in. } \\
& \text { Area required }=\frac{604200}{-11-170}=54.20 \mathrm{sq} \cdot \text { in. } \\
& \text { Ifficiency }=\frac{54.26}{54.20}=1.000 \text {. }
\end{aligned}
$$

2nd. floor to 4th. floor.
Unsuplorted length 12'.
Losd - total $=473500$ Ibs. eccentric $=42200$ Ibs. - eccen tricity $=8^{\prime \prime}$.

Section
4 1s $6 \times 4 \times 9 / 16$
Area sq . in.
21.24
6.00
$-\frac{15.75}{42.22}$
Total
9/10
$\frac{257}{442.26}$

$$
\text { least } r=\left(\frac{142.92}{42.99}\right)^{\frac{1}{2}}=3.21 \text {. }
$$

Eceentric moment $=42200 \times 8=337600$ Allowable unit stress $=$
$=16000-70 \frac{144}{3.21}-0.75 \frac{337}{1302.15}-\frac{600}{2}=115701 \mathrm{ss} . / \mathrm{sq}$.
Required aren $\frac{473}{17}-\frac{500}{57}=40.96$ Tfficiency $=\frac{42}{40.999}=104.9$

SIMTDRES AMD CORTICRS

plates (XII)and (XIII) show tite typical spandrelsections and cornice-section, es designed for this buildine. The spandrel beam consists of a plate girder, composed of four angles and meb plate, which carries both the masonry loads and the ends of the floor beams. The drawings show the method of supporting the brick wall at the girders and columns. There a seventeen-inch vall is used the fece bricks are suprorted by an angle, which is framed out from the Eirder by means of a plate attached to the stirfener angites of the girder. In many builaings two channels or I-ieams are used as spandrel beams. In this desirn the plate girder was used because it will have a greater depth than a heam composed of two standard shapes and will not have a grent excess of section. A deer eirder will afford a long riveted connection to the colums and tims malze a very rigid joint. In many build-

Plan section thru column. (street eley.) SHOWING METHOD OF SUFPORETING MASONET.
ines deep firders alone are relied upon to produce sufficient, rigiaity to withstand the stresses due to the mind pressure. The computations will be shown for the plate firder spendrel beam C. for the spandrel beam in the blankwails, for the girder at the ground floor in the street walle, and for the beams in the cornice-section.

Computations.

Spandrel C.

Span 18 ft . (marimum)
Totai weicht of masonry $=1.42 \times 4 \times 120 \times 18$

$$
=12200 \mathrm{lbs} .
$$

Iloor bearn raction $=10 \times 6 \times 155$ $=2300 \mathrm{lbs}$.
This load will be concentrated at the third points.
Inoment aue to masonry $10 a d=12200 \times 18 \times 18$

$$
=330000 \mathrm{1b} . \mathrm{in} .
$$

lioment due to concentrated loads $=8700 \times 6 \times 12$

$$
=670000 \mathrm{Ib} . \mathrm{ft} .
$$

Total moment

$$
=1000000 \text { 1b. in. }
$$

Use 24-1/4 in. b. to b. distance of angles.
Required $I=\frac{10000 \times 12.12}{16000}=757.0$
$3 / 8 \mathrm{in}$. web plate will be used.
4- s $4^{\prime \prime} \times 3^{\prime \prime} \times 2 / 8^{\prime \prime}$ will be useã because a width of at least 8 in . is required to form a proper support
of the masorry.

$$
\begin{aligned}
& \text { I of } 1 \mathrm{pl} .24 \times 3 / 8=\quad 432.0 \\
& \text { I of } 4 \text { - } 54^{\prime} \times 3 \times 3 / 8-24-1 / 4^{\prime \prime} 2 \text {. to b. } \\
& \text { Total } 1547.0
\end{aligned}
$$

This section will be somewhat in excess of thet required, but will be used on account of the additionel strenetin required for wind stresses.

Spandrel in Blank "iall at Office Floors.

Span $=20 \mathrm{ft}$. (maximum)
Total masonry 10 ad $=1.08 \times 12 \times 20 \times 120$
$=312001 \mathrm{bs}$.
Noment due to masomy load $=31200 \times 20 \times 12$
$=936000$ 1b. in.
Homent due to uniform floor lond $3 \times 20^{2} \times 185 \times 12$
$=333000 \mathrm{Ib}$. in.
Totel moment
$=1260000 \mathrm{Ib}$. in.

$$
\frac{I}{c}-=\frac{I}{269}-\frac{000}{16}-0000=79.4
$$

Use 2 E

$$
{ }^{79} \dot{2}^{-4}=3.97=-\frac{I}{c}-\text { required for eack }[
$$

Use $2-15^{\prime \prime}$ [33 Ibs. $\quad-\frac{I}{C}-=41.7$
For main floor use $2-15^{\prime \prime}$ E 40 Ibs. (Computations similar to those ε bove)

Girder at Gromd Wloor in Strect \because Grlls.

This efirder carries the onds of the floor-beams and side walk beams.

Span = 18 ft. (maximum)
Silumalk locid $=6 \times 10 \times 320=192001 \mathrm{~m}$.
Floor lond $=6 \times 1 \mathrm{C} \times 180=10800 \mathrm{Ib}$.
Total $=30000$ Ib.
This load will be concentrateu at third pointis.
Moment $=30000 \times 6 \times 12=21600001$. m . in.
Use 30-1/4 in. b. to b . distance of aneles.
Assume $28^{\prime \prime}$ as erfective depth.
$\frac{2-160-160}{28 \times 16000}=4.82 \mathrm{sq}$. in. required ares of flange.
1/8 of area of web considered as concentrated in mange.
$1 / 8 \times 30 \times 3 / 8=1.40 \mathrm{sq}$. in.
$4.82-1.40=3.41$ required area in angles.
$3.11 \div 2=I .71$ roquired area in one anele.
Ares of $4 \times 3 \pi 3 / 8 I=2.11 \mathrm{sq}$. in. (1 hole out)
$30.25-(2 \times I .28)=27.69$ in. effective denth.
2160000
$\overline{27.69 \times 16000}=4.87 \mathrm{sq}$. in. required flamee srea.
$4.87-1.40=1.73 \mathrm{sq}$. in. required ares one angle.
Use 4-上 $4^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime} \quad 30^{\prime \prime} \times 3 / 8^{\prime \prime}$ veo.

Cornice Berms.
Iover Beam. This berm carries only the weinht of the

lower and protecting pert of tho cornice.
Area of section (aproximatod from üruminess)
$=13.5 \mathrm{sq} . \mathrm{ft}$.
Span $=18 \mathrm{ft} .($ maximum $)$
".eight of cornice $=13.5 \times 120$
$=1620$ Tbs./ ft.
ii. $=1620 \times 18 \times 18 \times 12=7900001 b$. in.
$-\frac{I}{c}=\frac{790}{16}-\frac{000}{000}=49.3$
Use $15^{\circ 1}$ I $42 \# \quad-\frac{T}{c}-=58.9$.

Upper Beam. This beam carries the end of the roof beans, together with the weight of wall above the cornice.

Total weight of masonry $=1.08 \times 5 . C=115 \times 8=11$ Eco\#. loment due to masonry load $=\frac{11200 \times 18 \times 12}{8}$
$=302000$ Ib. in.
Roof load $=84 \times 6 \times 10=5$ C40\%.
This load will be concentrated at the third points.
Moment due to roof lose $=5040$ x 6 x 12

$$
=36200
$$

Total $\mathrm{N} .=338200$ Ib. in.
$-\frac{I_{-}}{c}=\frac{338}{16}-\frac{200}{000}=22.6$.
10" I $25 \frac{\pi}{11}-\frac{I}{c}-=24.4$.
Use 12^{*} I $37.5-\frac{I_{c}}{c}=36$.

TIITD BRACIITS

The winu actine upon the exposed surfirce of the buildine will produce stresses in the steel framework, for whicin provision must be made. The amount of Find bracine necessary will depend upon the proportions of the building. There are some enfineers who claim that wind pressure need not be considered when the heicht of the building does not exceed two and one-half times its leest wiath at the base. In the wew vork ordinance no special consideration of wind stress is prescribed for buildines, which have an exposed height of four times or less the least dimension of the bese of the building. The Chicago Ordinance states that allowance shall be made for vind pressure in buildines whose heichts exceed one and one-half times their least horizontal dimensions In this buildine the height is equal to sbout twice the everage horizontal aimensions, ana, therefore, wind bracine must be provided. The wind bracine commonly used consists of bracing in a vertical plane between columns. The bracine is either in the form of diaconal nembers or mee-braces are placed between the colums and the horizontal mombers. In some buildings single dee, guiders are used at the floor level in the walls between colums. Diagonal mertbers can not often be used on nccount, of interferrine vith vall openings. They are sometimes used in interior partitions or in exterior walls in which there are no window openings. Diagonal bracing will be used between the columns in the blank walls of this building. Fnee-braces will be used at the girder and colum cor-

Wind Bracing -At girders in street and light-court walls.

Wind Bracing-At girders in blank walls.
noctions ir the otice orterion nalls. The ditromml homeine will consist of eye bers varyine fron a three-square-incilsection at the lower floors to a one-square-inch-section fir. the upper moors. The mec-bracine will consist of a u sel Milate, riveted to the girder ancles and to tho columns. PInte (XIV) shoms the detail of the knee bracing ard of the connection of the diagonal merbers.

This completes the ěeneral design of the steel superstructure. The desien of the foundetions and cantilever girders is necessary to fully complete the structural desien of the mildine, but, as before stated, they will not ve included in this thesis.

Tinis.
佂

